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Context

MathWorks AUTOMOTIVE CONFERENCE 2022

▪ Common challenges for EV Battery 

pack design

– How to size the battery pack?

– How to manage thermal loads?

– How to control the battery pack?

– How to do predictive maintenance?
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Goal for today is demonstrate how MathWorks tools support battery 

design and controls development throughout the V-cycle
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Agenda

MathWorks AUTOMOTIVE CONFERENCE 2022

• Determine battery pack size to meet system-level targets

• Design and analyze thermal management systems

• Develop control systems

• Realize digital twin and predictive maintenance applications
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Agenda: Determine battery pack size to meet system-level targets

▪ How to perform system level analysis?

▪ How to evaluate battery efficiency and sizing?
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Vehicle-Level Targets

▪ Government agencies rate conventional, HEV and EV’s using different 

standardized tests (US city / highway cycle, WLTP, etc.)

▪ Different metrics to define energy efficiency (MPGe, Wh/km, etc.)

▪ Vehicle program sets targets → requirements for subsystem teams

World harmonized Light-duty vehicles Test Procedure

Low

Medium

High

Extra High

WLTP Class 3

Credit: US Environmental 

Protection Agency (EPA)
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Use System-Level Models to Evaluate System-Level Targets

Target How to evaluate

Fuel economy Perform drive cycle test

Range Perform drive cycle test

Acceleration Perform Wide Open Throttle (WOT) test

Cost Assume $ / kWh

Credit: 4x4 Dynamometer by Adam Navrotny / CC BY-SA 3.0

Simulations used to frontload 

design / save money



7

Right-Level Modeling

▪ We can answer system-level questions using system-level models, but what 

level of fidelity is appropriate for the task?

▪ Initial estimates use simplifying assumptions

– Fast running 1D models

– Neglect thermal / spatial effects

– Simplified controls

▪ Design-oriented tasks require higher fidelity

– Slower running multidomain models

– Include thermal / spatial effects

– Production-oriented controls

Lumped 

Parameter 

Network

CFD and 

FEA

Computation

Time

Model Fidelity

Spreadsheet
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MathWorks Offering for Virtual Vehicle Simulation
Engineering Tools + Application Expertise

Create       
Vehicle

Integrate 
Software

Author  
Scenarios

Simulate & 
Analyze

Deploy 
Simulation

Vehicle Templates

Subsystem Libraries

Modeling Guidelines

C/C++ Interface

Reduced Order Models

FMU Integration

Scene & Scenarios

Open Standards

Drive Cycles

Visualization

Data Analysis

Report Generation

Cloud Integration

Datalake Integration

HIL Deployment

Value proposition:

▪ Proven tools for modeling of physics and software

▪ Reference applications for reduced time-to-simulation

▪ Common platform for model reuse

▪ Solutions for large-scale modeling and simulation

▪ Flexible platform for growth / new use casesLearn more:

Virtual Vehicle
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Virtual Vehicle Composer App
New in

▪ Unified interface to quickly 

configure a virtual vehicle 

model, select test cases 

and review results

▪ Available with Powertrain 

Blockset and / or Vehicle 

Dynamics Blockset

▪ Includes detailed powertrain 

models, vehicle dynamics 

and closed-loop controls

Learn more:

Virtual Vehicle Composer
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Virtual Vehicle Composer App
New in

Workflow steps:

1. Start new session

2. Select powertrain

3. Select data

4. Select scenarios

5. Select signals to log

6. Generate model

7. Run test suite

8. Review results
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Model Customization

▪ Virtual Vehicle Composer app gets you a good starting point quickly

▪ Generated models are open, so you can customize it

– Add new plant, controller or sensor model features

– Create custom test scenarios

▪ Leverage Simulink platform

– Integrate C code, S-functions, FMU, etc.

– Perform large scale studies

– Deploy model (HIL, cloud, etc.)
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Generated Model



13

System-Level Results

Metric Target Results

Efficiency [Wh/km] < 175 179.3

Battery cost [$] < 7000 6428

Range [km] > 300 286.8

t0-100 [s] < 8.0 8.3

WOT testWLTP test

Default component sizes don’t 

achieve system-level requirements.

Time for a redesign!
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Summary: System-Level Simulation

▪ Key take-away

– MathWorks provides system-level simulation tools to evaluate trade-offs early / quickly

▪ Tips discussed

– WLTP provides a single drive cycle to capture both city and highway driving

– Virtual Vehicle Composer can quickly generate model of interest

– Generated models can be customized as needed
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Agenda: Determine battery pack size to meet system-level targets

▪ How to perform system level analysis?

▪ How to evaluate battery efficiency and sizing?
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Component Sizing Problem Statement

▪ Goals:

– Find battery size & gearing that 

provides good efficiency at a 

reasonable price

▪ Constraints:

– Meets typical driving demands

– Reasonable EV range

– Reasonable acceleration

▪ Design Variables:

– Number of battery cells in parallel (Np)

– Number of battery cells in series (Ns)

– Final drive ratio (Nd)
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Component Sizing Problem Statement

min f(x) = w1*ECR + w2*Cost

subject to:

g1: DriveCycleFault < 0

g2: Range > 300 km

g3: t0-100 < 8 sec

Where:

x1: 10 < Np < 50 (Integer)

x2: 32 < Ns < 160 (Integer)

x3: 2 < Nd < 10 (Continuous)

ECR = Energy Consumption Rate [Wh/km]

{Np, Ns} {Nd}
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Assumptions

▪ System level metrics

– ECR = battery power consumed over 

WLTP Class 3 / distance travelled

– Range = battery capacity / ECR

– Cost = battery capacity * $125 / kWh

▪ Battery

– Cell characteristics: 4.8 Ah, 3.6 V 

(comparable to Tesla Model 3)

– Energy density: 145 Wh / kg

▪ What’s out of scope?

– Packaging / geometry

– Thermal cycling / aging

– Component selection options (catalog)

– Etc.
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Battery Model

▪ Datasheet Battery block

– Simple lumped, but fast model for system-level studies

– Accounts for changes in Ns and Np

– Temperature treated as external signal
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Motor Model

▪ Mapped Motor block

– Simple lumped, but fast model for system-level studies

– Neglects impact of bus voltage (Ns) on base speed

– Used motor maps at 5 bus voltage levels to capture 

effect of Ns on max motor torque
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Tire Model

▪ Longitudinal Wheel block

– Uses Magic Formula tire equations

– Allows for scaling ground friction

– Long list of parameters, often fit from tire 

test data

▪ Tire slip

– Without good launch controls, WOT test 

can lead to excessive tire slip

– Results in slower than expected t0-100

performance

▪ Work-around

– Apply torque gradually to minimize slip

Tire slip saturates

t0-100 = 7.6 s

Tire slip in good range

t0-100 = 7.3 s
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Drive Cycle Faults

▪ Drive Cycle Source block

– Includes options for fault tracking

– WLTP allows for:

▪ Velocity tolerance = 2 kph 

▪ Time tolerance = 1 s

▪ Max faults = 10

▪ Max single fault time = 1 s

▪ When simulations exceed allowances

– Track cumulative time spent outside 

tolerance window

– Provides more continuous measure of 

how “infeasible” design is
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Metric improves as…

Design Trade-offs

Metric Ns Np Nd

Mass ▼ (fewer cells) ▼ (fewer cells)

ECR ▲ (higher max torque)

▼ (less mass)

▲ (lower resistance)

▼ (less mass)

▼ (more efficiency)

Cost ▼ (fewer cells) ▼ (fewer cells)

Range ▲ (more energy)

▼ (less mass)

▲ (more energy)

▼ (less mass)

Acceleration ▲ (higher max torque)

▼ (less mass) ▼ (less mass)

▲ (more wheel torque)

Numerical optimization provides a rigorous 

method to balance competing objectives
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Preparing Models for Optimization Studies

▪ Simulation settings

– Use “Accelerator” mode to compile model for 

faster execution time

– Use “Fast Restart” to avoid recompiling in 

between sims

▪ Parameter handling

– Use parameter-based Multiport Switch to 

change drive cycle source without recompile

– Remove parameters from data dictionary / 

model workspace for simple script overrides
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Running Simulations as a Function Call
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Initial Assessment

▪ Performed initial parametric study

– Sweep of Np, Ns for fixed Nd

– Study problem statement before 

launching long optimization study

▪ Lessons learned

– ECR trend was unexpected

– Dominated by mass penalty, not 

benefits of more power (Ns) / lower 

losses (Np)

– WLTP never pushed motor to max 

torque / power limits

T
o
rq

u
e
 [
N

m
]

Speed [rpm]

WLTP test

operating points

Speed [rpm]

WOT test

operating points
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Design Process

Modify 

Design 

Variables

Optimal 

Design
Objectives

met?

No

YesInitial 

Design 

Variables

System
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MathWorks Optimization Products

▪ Optimization Toolbox

– Functions for finding parameters that minimize

or maximize objectives while satisfying constraints

▪ Global Optimization Toolbox

– Functions that search for global solutions

to problems that contain multiple maxima or minima 

on smooth or nonsmooth problems (requires Optimization 

Toolbox)

Objective with single minimum

Objective with multiple minima

Learn more:

Optimization Toolbox

Global Optimization Toolbox
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Optimization Results

Metric Baseline Optimized
(% improvement)

ECR [Wh/km] 179.3 172.5 (-3.8%)

Cost [$] 6428 6484 (+0.9%)

Range [km] 286.8 300.6 (+4.8%)

t0-100 [s] 8.3 8.0 (+3.6%)

Nd 7.97 4.88

Battery cells 96s31p 158s19p

Bus voltage [V] 345.6 568.8

Capacity [kWh] 51.4 51.9

Performed 300 function calls (~3 hours)



30

Pareto Optimization Studies

▪ Reassess problem with tradeoff 

between range and cost (direct 

competition for battery size)

min f(x) = -w1*Range + w2*Cost

subject to:

g1: DriveCycleFault < 0

g2: Range > 300 km

g3: t0-100 < 8 sec

▪ Sweep weights to quantify tradeoffs

– w2 < 50%: range constraint is active

– w2 > 50%: cost objective gets outweighed

[0.5, 0.5]

[0.6, 0.4]

[0.75, 0.25]

[1, 0]

G
o

o
d

 c
o

s
t

Good range
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Summary: Component Sizing

▪ Key take-away

– Optimization is a rigorous means to identify best parameter values

▪ Tips discussed

– Customize model to enable fast-restart / accelerator mode

– Watch for tire slip during aggressive acceleration (e.g., WOT test)

– Specifying the right problem statement can be iterative process

– Additional constraints can be added (e.g., limit selection to parts catalog) 

– Optimization studies can quantify tradeoffs between competing objectives
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Things to consider for creating the battery pack?

▪ Till now –

– We choose Ns and Np suitable for our targets

▪ We need to address –

– How to assemble the cells?

– How to organize the modules?

– What kind of cooling to use? How should be place the thermal barriers, etc.
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Simscape Battery
New product launched in R2022b
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Simscape Battery Pack Builder
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Various Modelling Approaches
Battery Models

Infinite Charge Charge

Dynamics
Cell

Behavior

System-Level Behavior Component Validation Component Design

High FidelityLow Fidelity Charge/Discharge Characteristic

Finite Charge, Fade,

Temperature Dependent
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Simscape Battery Capabilities
Modeling API, Cooling Plates, Battery Management Algorithms

▪ Model heat transfer between battery,

liquid cooling system, and environment

– Control cell-to-cell temperature variation

– Tradeoff of pumping costs

and cooling efficiency

▪ Different cooling plate topologies

– Edge, parallel channel, U-shaped channel

– Single- and double-sided plates

▪ Adjust resolution of thermal model

– Define quantity and placement of nodes
3 Thermal

Models

5 Thermal

Models
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Battery Pack Design

Electrical & Thermal

Physical Layout Simscape Implementation
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Example – Thermal Runaway

Simscape Component

Energy Balance Equations

Calculate heat load due 

to cell abuse reactions
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Battery Pack Design Examples

Thermal Management

• Analyze cell-to-cell temperature gradient and devise thermal management 

strategies, robust BMS

Ability to track different weak/strong cells in the entire pack and design robust strategies for managing 

temperature, electrical safety, and pack utilization from a range perspective.
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Battery Pack Design Examples

Thermal Management for BEVs

• Battery pack cooling strategy – single or separate cooling systems
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Model Degraded Battery Behavior

▪ Model age-related degradation

of battery performance 

– Specify dependence of

other battery parameters

on the charge-discharge history

– Specify calendar aging
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Simscape Battery Capabilities
Modeling API, Cooling Plates, Battery Management Algorithms

▪ Charge and discharge

– CC-CV, current limits

▪ Estimators

– SOC, SOH

▪ Protection

– Current, voltage, and temperature monitor

– Fault qualification

▪ Thermal management

– Coolant and heater control

▪ Support for C-code generation
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Additionally use neural networks to estimate SOC

How to Estimate Battery State of Charge 

Using Deep Learning
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Simscape Battery
Examples

▪ Build Model of Battery

Pack with Cell Aging (link)

▪ Thermal Analysis for New

and Aged Battery Packs (link)

▪ Peak Shaving with Battery

Energy Storage System (link)

▪ Build Model of Battery

Pack for Grid Application (link)

▪ Protect Battery During Charge

and Discharge for EV (link)

▪ Build Model of Battery Pack

with Cell Balancing Circuit (link)
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Generate C/C++ Code From BMS Algorithm Models  
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Agenda

MathWorks AUTOMOTIVE CONFERENCE 2022

• Determine battery pack size to meet system-level targets

• Design and analyze thermal management systems

• Develop control systems

• Realize digital twin and predictive maintenance applications
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How are Digital Twins used?
By logging data from the deployed assets

▪ Does the system perform as advertised?

– Operation: must operate for 3-4 hours in the morning and 3-4 hours in the afternoon

– Charging: battery must fully charge in 30 min (at lunch time)

▪ What is the effect of ambient temperature on the system?

– Ambient temp ranges from -10 to 35°C over the year.  How does this affect system 

performance?

▪ What is the actual duty cycle based on operational data?

– Power used during operation vs. charging

– Total number of charge / discharge cycles

– etc.
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Digital Twin?
A definition

“A digital twin is an up-to-date representation, a model, of an actual physical asset in 

operation. It reflects the current asset condition and includes relevant historical data 

about the asset.

Digital twins can be used to evaluate the current condition of the asset, and more 

importantly, predict future behavior, refine the control, or optimize operation.”

https://www.mathworks.com/discovery/digital-twin.html
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Why Digital Twin?
Business value & motivating factors

▪ Do things better: Optimize your customer’s experience

▪ Do new things: Evolve business models and opportunities

• Anomaly detection • Operations optimization

• Predictive maintenance • Fleet management

• Asset performance management • Feedback to design

Current State

Sell a system

Future State

Selling a system’s operation

(capability as a service, etc.)
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Sample use case:
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Workflow for Digital Twin

Create a model with required physics or fidelity

Keep the model up-to-dated as per the real 
system (asset)

Use simulation to create/tune algorithms for 
predictive maintenance

Deploy on cloud or edge devices
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Step 1: Create a model with required physics or fidelity
Choosing a model strategy is a function of what you have and what you know

▪ Factors in selecting model strategy

– What does your application need?

– Do you have knowledge of system’s physics (or only historical data)?

– Who has the expertise needed to build the model?

• Kalman estimator 

• System identification

• Regression

Data-Driven

• Machine Learning

• Deep Learning

• Reinforcement Learning.

AI-Based

• Dynamic models of systems/components

• Electrical, mechanical, algorithms, etc.

• Can integrate models from other tools, e.g., FEM

Physics-Based

ROM
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Step 2: Keep the model up-to-dated as per the real system (asset)
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Raw Log Files
Cloud based data preprocessing pipeline

Machine / vehicle in use

Logger data
Preprocessed 

data

AWS
MATLAB running on a 

32 core machine

Vehicle Network Toolbox
Parallel Computing Toolbox

.MF4 files

Data logger

.parquet files

Implementation Details 

• Source and destination s3 buckets are different
Credential management

• Cloud based compute and parallel computing sped up the work
Leverage compute when you need to

• Run MATLAB on a Windows machine
Needed this for file specific functionality
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R0

R1

C1Em

model (Em,R1,R0,C1)

Experimental setup
=



in
out

out ☺

Use Parameter Estimation to update the models
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Step 3: Use simulation to create/tune algorithms for predictive 

maintenance



60

Simulate to Set Expectations
As internal resistance increases, what should we see?

Internal Resistance - 𝑅 =
𝜕𝑉

𝜕𝐼

Synthetic Data

Slope change

𝑅 =
𝜕𝑉

𝜕𝐼
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Incrementally fit data based on voltage values
Bin data by SoC

Internal Resistance - 𝑅 =
𝜕𝑉

𝜕𝐼

Discharge

selection

I(A)

V(V)
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Initial results on a subset of data
Internal resistance as a function of SoC and Temperature

Internal Resistance - 𝑅 =
𝜕𝑉

𝜕𝐼

Discharge

×
𝑵𝒑

𝑵𝒔

Convert from pack to cell
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Next Steps for Modeling Work
Strategy and planned next steps

▪ Understand system behavior over time

– How does internal resistance change over time?

– Can we detect degradation in power output over time?

▪ Battery cell performance parameters

– Internal resistance so far (power), capacity next (energy)

– Combine internal resistance and capacity learnings into a SoH story

▪ Feature Engineering + AI modeling & Automation
– Cloud based parallel computing (“Thinking out loud on the cluster”)
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Summary

• Determine battery pack size to meet system-level targets

• Design and analyze thermal management systems

• Develop control systems

• Realize digital twin and predictive maintenance applications
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